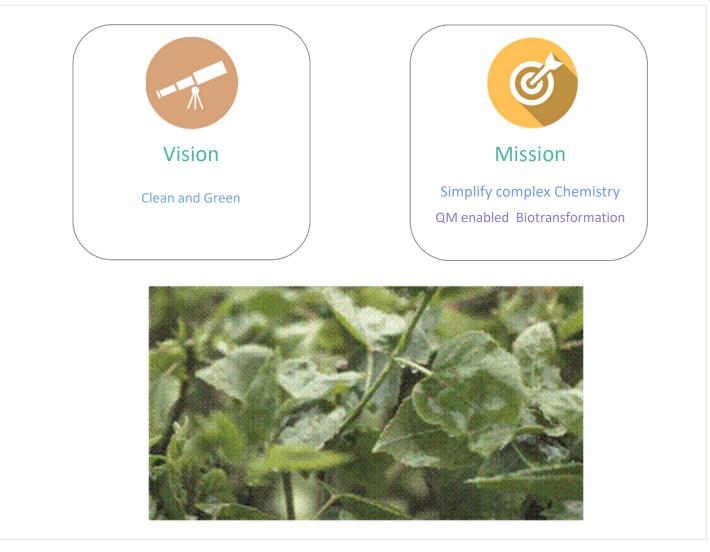


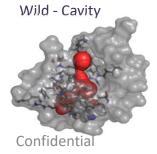
Quantumzyme

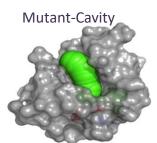
Catalyze your business



Overview

Vision and Mission




QZyme Workbench™

THE HOME GROWN POWERFUL FRAMEWORK FOR ENZYME ENGINEERING

While the nature of each project may differ, Quantumzyme executes engagements with a methodology that is tailored to achieve best results and meet Customer expectations

Each project is executed with our powerful QZyme Workbench to make our engagements successful

QZyme Pilot™

Initial hypothesis framing from key intelligence and information assimilation based on data, leads from a novel suggestion to an effective proposition

QZyme Modeller™

Developing high confidence 3D model in the absence of accurate structural information by applying algorithms best suited for each case

QZyme CatMec[™]

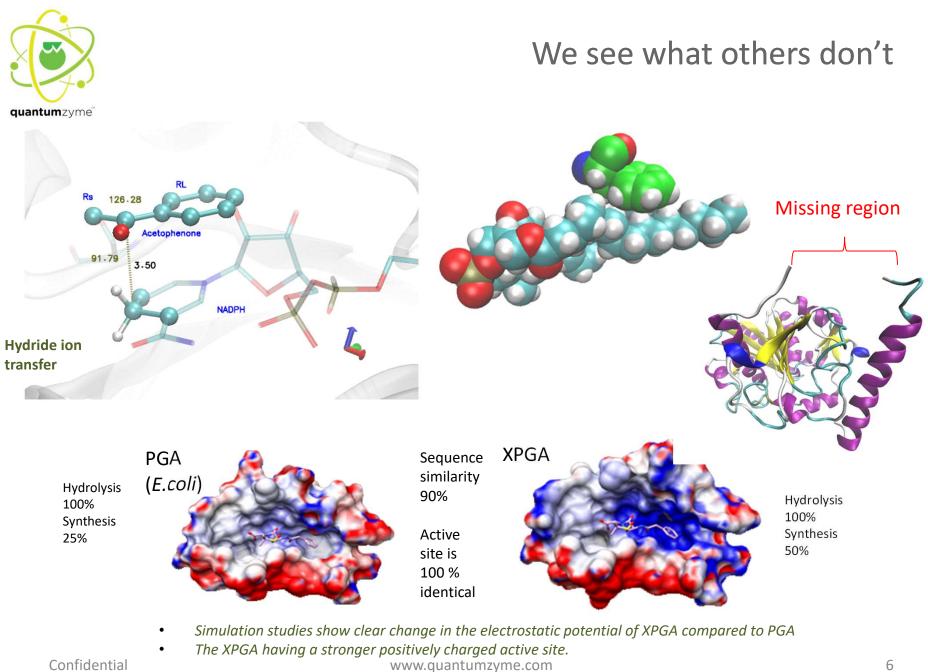
In-depth comparison study of the catalytic mechanism of the enzyme to lay the foundation for a robust enzyme development strategy

QZyme Hotspot[™]

Discovery of key functional residues that contribute to substrate binding, transition-state stabilization and product release and estimating their

QZyme Designer™

Creation of a focused library of variants of optimizing functional hotspots and in depth study of the catalytic mechanism of hundreds of variants designed to


www.quantumzyme.com

Execution Methodology

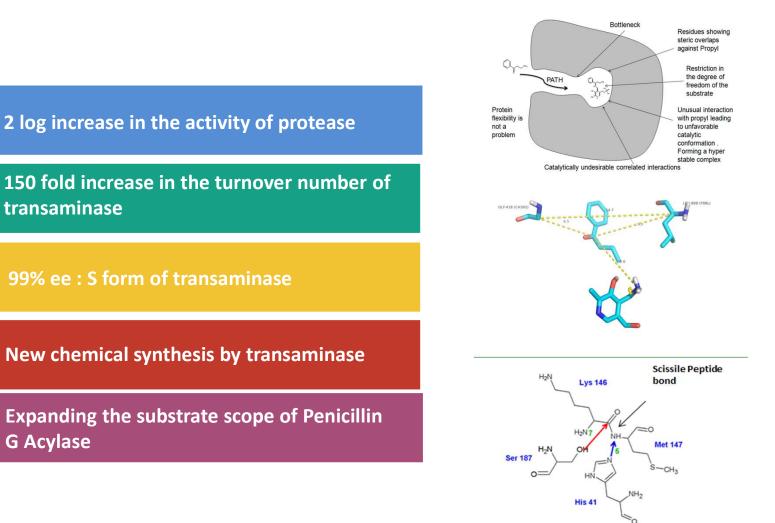
Identification and Classification of the requirement / problem statement
Analysis of standard and non-standard use cases within the requirement
Preparation of parameters / inputs for the QZyme Workbench

Structured workflow and execution of the project with the QZyme Workbench

1

2

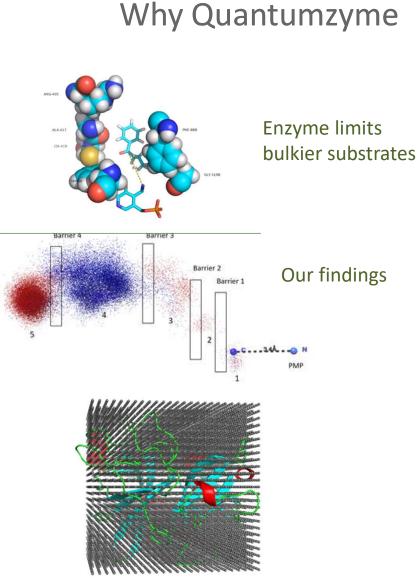
3


4

5

transaminase

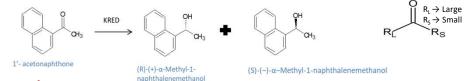
G Acylase


Some Benchmark Results

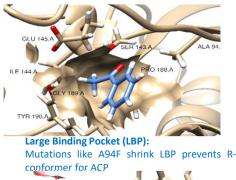
A receptor dependent-4D QSAR approach to predict the activity of mutated enzymes. Scientific Reports, Nature Publication DOI:10.1038/s41598-017-06625-x

- 4th dimensional view of high resolution details of enzymatic reaction
- MD derived and QM optimised
 E-S→P reaction coordinates used
 for alanine scanning
- Unified energy terms to derive activation energy of the enzyme variants

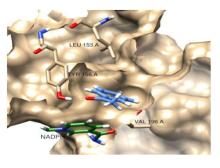
Grid Based Hotspot prediction


Case studies

Producing S-enantiomer variants

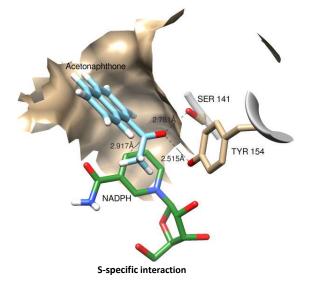

quantumzyme

Objective: Identification of S selective enzymes for a given prochiral substrate from a panel of variant sequences


Results:

- Total 177 variants of KRED, one being WT and all variants have been modelled
- We have standardized the protocol for Acetophenone and then applied • to 1'-Acetonaphthone(ACN)

nfidentia



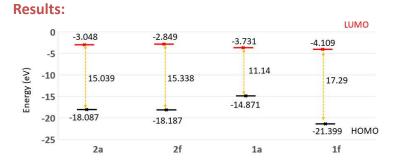
Enlarged Small Binding Pocket (ESBP): Y190G, E145S allows S-conformer for ACP

Challenges:

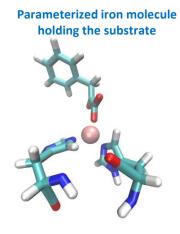
- Getting Enzyme-Substrate (ES) conformers for each • variant
- Understanding the enzyme mechanism by using QM .
- Obtaining reaction-specific interaction parameters .
- Filtering the reaction-specific conformers and ranking •

Conclusion:

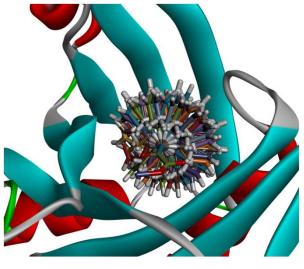
- The mutation in the SBP enlarges binding pocket leads to reversal of RL and RS for an S-specific interaction
- QZyme framework successfully identified 60% more Senantiomer producing variants than the random selection for Acetonaphthone


www.quantumzyme.com

for


MD & QC approach to reduce substrate inhibition

Objective: To increase enzyme activity by reducing substrate inhibition


RMSF heat map of atoms in the substrate

Challenges:

- Enzyme-Substrate complex conformation
- Parameterisation of iron for coordination with enzyme
- Multiple transition state for the reaction
- Effect of modification on binding of E-S complex

Reference binding modes of substrate generated using QZyme CatMec

Conclusion:

- Obtained optimum michaelis complex
- Parameterisation for iron using QC approach
- Anchoring substrate to reduce instability

Engineering Hybrid Phospholipase

Objective: To find best possible variants for the enzyme PLA1 to increase its activity by 10 folds

Path identification for the entry of substrate:

Challenges:

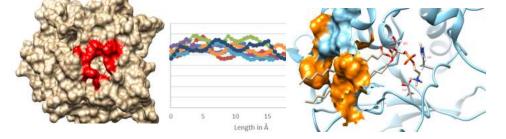
- Missing region in the protein
- Mechanism was not known
- Bigger substrate molecule
- Path for substrate entry

Qzyme screener

 Enzyme variants screened using Qzyme screener

Normal pH Lower pH Mutations done based on hotspots of the protein

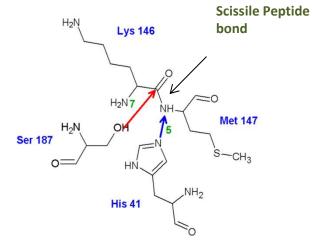
Missing region

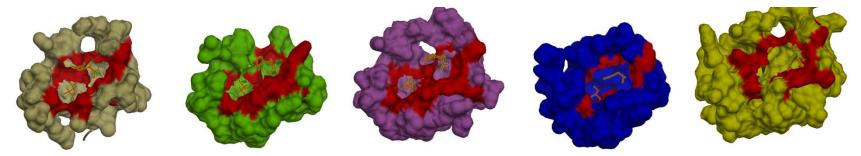

MD based CAS to find

out functional hotspots

Identified hotspots for normal pH and for lower pH. CAS was used to find hotspots functions

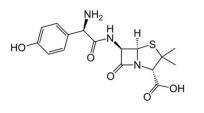
Bottleneck of the substrate entering domain

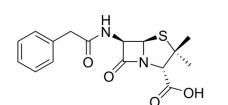

- The bottleneck radius is 2.38 Å
- The length of the tunnel was 17.5 Å



Our Experience

• Enetropeptidases – engineered to attain 2 log increase in the activity


Designed to expose the scissile peptide bond




Our Experience

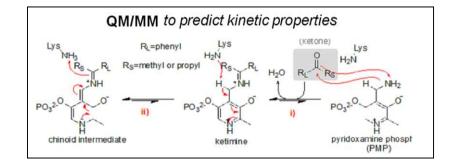
• Penicillin G acylase- engineered to convert semi synthetic substrate

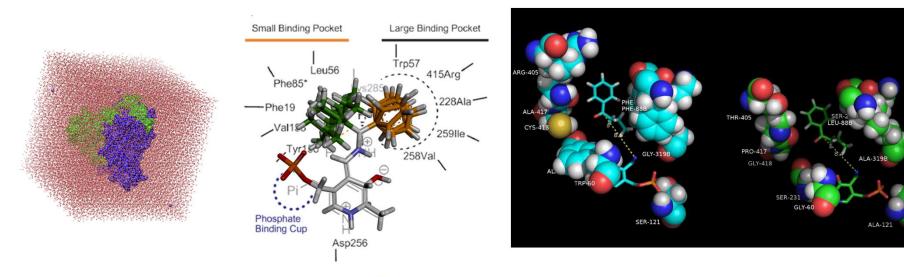
Amoxicillin

Penicillin G

Cefotaxime

 Penicillin G acylase – engineered to improve the kinetic properties of the enzyme




Our Experience

guantumzyme Engineered transaminase to expand its substrate scope towards bulky ketones

The value of drugs containing chiral amines market is estimated to be \$88 Billion.

Amine Transaminases (ATAs) are used in the production of chiral amines as an alternative to chemical synthesis to reduce cost incurred by the additional purification steps, inadequate stereo selectivity, and a few other advantages.

Collaborations

Prof. Uwe T. Bornscheuer

Prof. Uwe T. Bornscheuer

Professor at University of Greiswald. Major research target is the development of tailor-made biocatalysts suitable for industrial applications.

Enzymes studied : Transaminases, Baeyer-Villiger Monooxygenases, Esterases/Lipases, Oxidases, Others

Applications

- 1. Synthesis of optically pure compounds, e.g. for pharmaceutical applications
- 2. Modification of fats and oils, e.g. structured triglycerides
- 3. Synthesis of detergents, e.g. sugar esters
- 4. Development of enzyme cascade reactions
- 5. Investigation of novel reaction systems such as SpinChem

He has Published 374 articles and written chapters in 34 famous books

Major Awards

- 2015: Stephen S. Chang Award of the American Oil Chemists' Society (AOCS)
- 2014: Wilhelm-Normann-Medal of the German Society of Fat Science e.V. (DGF)
- 2012: Chevreul-Medal from the French Society of Lipid Research (SFEL), Paris, France.

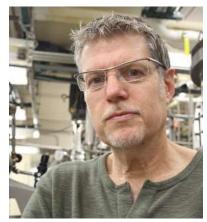
Prof. Richard A. Gross

Prof. Richard A. Gross

Professor, Constellation Chair, Rensselaer Polytechnic Institute. His work lies at the interface between Chemistry and Biology; united by the common theme of sustainability and green chemistry. He is developing next-generation bio-based chemicals and materials by processes that are safe and environmentally friendly

Enzymes studied : Lipase, cutinase, mono-oxgenase (P450), and metallo-proteins, Others

Applications


- 1. Dielectric structural materials for energy storage
- 2. Biocomposites
- 3. Amphiphilic polymers for delivery of fragrants/drugs/flavors
- 4. bioresorbable polyester implant materials
- 5. Enzyme catalysts for polymer recycling/modification
- 6. Tissue engineering matrices for regeneration of articular cartilage and spinal cord repair.

He has about 600 publications that have been cited over 21,000 times (h-index 76, i10-index 276).

Major Awards

- 2018: ACS Award for Affordable Green Chemistry
- 2017: Lifetime achievement award by the Bioenvironmental Polymer Society (BEPS)
- 2014: Fellow of the ACS Polymer Division
- 2010: Turner Alfrey Visiting Professor
- 2003: Presidential Green Chemistry Award

Prof. Lawrence P. Wackett

Prof. Lawrence P. Wackett

Distinguished McKnight University Professor, University of Minnesota. His work is focused on Biodegradation, Commercial bioremediation, Industrial biocatalysis, Hydrocarbon biosynthesis & Enzyme mechanisms

Enzymes studied : Cyanuric acid hydrolase, Others

Applications

- 1. Cyanuric acid hydrolase Enzyme structure/mechanism and applications
- 2. Fate of agricultural chemicals and water protection
- 3. Emerging pollutants Water remediation of personal care products (PCPs)
- 4. Aromatic hydrocarbons Modeling and mechanisms

He has more than 400 publications that have been cited over 17,000 times (h-index 67, i10-index 172).

Biocatalysis

- Biosynthesis of beta-lactone natural products
- Hydrocarbon biosynthesis Enzyme structure and mechanisms
- Enzyme-based sensors for detecting toxicants
- Predicting biocatalytic potential of enzymes and microbes

Engagement Model

Fee For Service – Project to design/engineer the enzyme of interest Milestone based – Risk sharing and payment based on success

Requirements from sponsor

- \checkmark Clearly define the objectives of the study
- \checkmark 3D structure of the enzyme of interest
- ✓ Mode of binding and kinetic properties of the enzyme-substrate reaction
- ✓ Structure of enzyme-substrate complex
- ✓ Reported structure of enzyme complexed with other active substrates OR inhibitor/s
- ✓ Specify process conditions of the reaction
- ✓ Available literature study

Partial Customer List


Eat Well, Live Well.

THANK YOU

info@quantumzyme.com

Confidential

www.quantumzyme.com